MTL框架:模型、权重与融合公式

5 篇文章 0 订阅
订阅专栏


一矢多穿:多目标排序在爱奇艺短视频推荐中的应用

多任务多目标 CTR 预估技术

多任务学习的两个主要研究方向:

  1. 网络结构的构造;
  2. 多目标优化的方法;

模型设计

AI上推荐之MMOE
在这里插入图片描述

1. 任务依赖关系

  • 任务序列依赖关系建模:适合于不同任务之间有一定的序列依赖关系。

比如电商场景里面的ctr和cvr,其中cvr这个行为只有在ctr之后才会发生。这种依赖关系如果能加以利用,可以解决任务预估中的样本选择偏差(SSB)和数据稀疏性(DS)问题。
- 样本选择偏差: 后一阶段的模型基于上一阶段采样后的样本子集训练,但最终在全样本空间进行推理,带来严重泛化性问题
- 样本稀疏: 后一阶段的模型训练样本远小于前一阶段任务


1. ESMM
多任务学习模型之ESMM介绍与实现

CVR预估面临两个关键问题:

  1. Sample Selection Bias (SSB)
    训练数据为点击数据,但需要预测曝光数据,即训练数据和预测数据分布不一致,带来严重泛化性问题。
    在这里插入图片描述

  2. Data Sparsity (DS)
    CVR预估任务训练使用的点击样本远小于CTR预估训练使用的曝光样本

x,y,z分别表示曝光,点击,转换,则

p ( y = 1 , z = 1 ∣ x ) ⏟ p C T C V R = p ( y = 1 ∣ x ) ⏟ p C T R × p ( z = 1 ∣ y = 1 , x ) ⏟ p C V R \underbrace{p(y=1, z=1 \mid x)}_{p C T C V R}=\underbrace{p(y=1 \mid x)}_{p C T R} \times \underbrace{p(z=1 \mid y=1, x)}_{p C V R} pCTCVR p(y=1,z=1x)=pCTR p(y=1x)×pCVR p(z=1y=1,x)

注意到,在全部样本空间中,CTR对应的label为click,而CTCVR对应的label为click & conversion,这两个任务是可以使用全部样本的。因此,ESMM通过学习CTR,CTCVR两个任务,再根据上式隐式地学习CVR任务。具体结构如下:
在这里插入图片描述

  • 共享Embedding。 CVR-task和CTR-task使用相同的特征和特征embedding,即两者从Concatenate之后才学习各自独享的参数;
  • 隐式学习pCVR。pCVR 仅是网络中的一个variable,没有显示的监督信号,反映在目标函数中:
    L ( θ c v r , θ c t r ) = ∑ i = 1 N l ( y i , f ( x i ; θ c t r ) ) + ∑ i = 1 N l ( y i & z i , f ( x i ; θ c t r ) ∗ f ( x i ; θ c v r ) ) L\left(\theta_{c v r}, \theta_{c t r}\right)=\sum_{i=1}^N l\left(y_i, f\left(\boldsymbol{x}_i ; \theta_{c t r}\right)\right)+\sum_{i=1}^N l\left(y_i \& z_i, f\left(\boldsymbol{x}_i ; \theta_{c t r}\right) * f\left(\boldsymbol{x}_i ; \theta_{c v r}\right)\right) L(θcvr,θctr)=i=1Nl(yi,f(xi;θctr))+i=1Nl(yi&zi,f(xi;θctr)f(xi;θcvr))

2. DBMTL
多任务学习模型之DBMTL介绍与实现

常见的多目标优化模型是从每个优化目标单独的模型网络出发,通过让这些网络在底层共享参数,实现各目标相关模型的适当程度的独立性和相关性。不论底层如何共享参数,此类网络的概率模型可以用下述公式描述:
P ( l , m ∣ x , H ) = P ( l ∣ x , H ) ⋅ P ( m ∣ x , H ) P(l, m \mid x, H)=P(l \mid x, H) \cdot P(m \mid x, H) P(l,mx,H)=P(lx,H)P(mx,H)其中l,m 为目标,x为样本特征,H为模型。这里做了各目标独立的假设。

利用贝叶斯公式,以上模型可以改为 P ( l , m ∣ x , H ) = P ( l ∣ m , x , H ) ⋅ P ( m ∣ x , H ) P(l, m \mid x, H)=P(l \mid m,x, H) \cdot P(m \mid x, H) P(l,mx,H)=P(lm,x,H)P(mx,H)

在这里插入图片描述
在这里插入图片描述


2. 底层表示共享

  • Shared Bottom->MMoE:MMoE将shared bottom分解成多个Expert,然后通过门控网络自动控制不同任务对这些Expert的梯度贡献。
    Shared Bottom最大的优势是Task越多, 任务之间过拟合的风险越小。 但是劣势也非常明显,就是底层强制的shared layers难以学习到适用于所有任务的有效表达, 尤其是任务之间存在冲突或者两个任务相关性没那么好(比如排序中的点击率与互动,点击与停留时长)。

  • MMoE->PLE:PLE在MMoE的基础上又为每个任务增加了自有的Expert,仅由本任务对其梯度更新。
    MMoE做了一个聪明的事情,“化整为零”,把一个共享参数矩阵化成多个结合gate的共享Expert。不同的loss在存在相互冲突时,在不同的expert上,不同loss可以有相对强弱的表达,那么出现相互抵消的情况就可能减少,从而达到“各有所得”的状态,即部分experts受某task影响较大,部分experts受其他task主导。但是MMoE并不保证“各有所得”,PLE增加了specific experts,保障“各有所得”,能够在“共享参数”的撕扯争夺上,有了最基础的保障。

Loss设计

1. loss如何选择?

  • 观看时长:weighted logistic regression
  • ctr/pr:cross entropy

对于回归目标,采用正逆序对比(PNR,positive-negative-ration)来评估多目标预估值融合后的排序效果。

2. 权重如何调整?

  • Magnitude(Loss量级):Loss值有大有小,出现取值大的Loss主导的现象,怎么办?
  • Velocity (Loss学习速度): 任务有难有易,Loss学习速度有快有慢,怎么办?
  • Direction(Loss梯度冲突):多个Loss的反向梯度,更新方向冲突,出现翘翘板、负迁移现象,怎么办?

2.1 Magnitude

深度学习多目标优化的多个loss应该如何权衡

AI上推荐 之 多任务loss优化(自适应权重篇)

Uncertainty weight(2018)

Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics

多任务学习中损失函数权重的自动调整

自动学习任务的uncertainty,给uncertainty大的任务小weight

  • 偶然不确定性:数据本身的误差,可分为同方差(数据依赖)和异方差(任务依赖)
  • 认知不确定性:模型的误差,衡量input data是否存在已有的数据中

利用同方差自动计算任务权重( 1 / 2 σ 2 1/2\sigma^2 1/2σ2)

在这里插入图片描述


2. 2 Velocity

Gradnorm(2018)

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

作者认为,任务不平衡会阻碍模型的训练,而这种阻碍其实体现在了反向传播时参数的梯度不平衡。所以通过动态调整loss权重,让参数的梯度保持平衡。

定义了一个gradient loss,用来衡量每个任务的loss权重,即实际权重和理想权重的差距

L g r a d ( t ; w i ( t ) ) = ∑ i ∣ G W ( i ) ( t ) − G ‾ W ( t ) × [ r i ( t ) ] α ∣ 1 \mathrm{L}_{\mathrm{grad}}\left(\mathrm{t} ; \mathrm{w}_{\mathrm{i}}(\mathrm{t})\right)=\sum_{\mathrm{i}}\left|\mathrm{G}_{\mathrm{W}}^{(\mathrm{i})}(\mathrm{t})-\overline{\mathrm{G}}_{\mathrm{W}}(\mathrm{t}) \times\left[\mathrm{r}_{\mathrm{i}}(\mathrm{t})\right]^\alpha\right|_1 Lgrad(t;wi(t))=i GW(i)(t)GW(t)×[ri(t)]α 1

  • W : 一般选shared layer的最后一层参数,能节省计算量
  • G W ( i ) ( t ) = ∥ ∇ W w i ( t ) L i ( t ) ∥ 2 \mathrm{G}_{\mathrm{W}}^{(\mathrm{i})}(\mathrm{t})=\left\|\nabla_{\mathrm{W}} \mathrm{w}_{\mathrm{i}}(\mathrm{t}) \mathrm{L}_{\mathrm{i}}(\mathrm{t})\right\|_2 GW(i)(t)=Wwi(t)Li(t)2 :每个单任务 w i ( t ) L i ( t ) \mathrm{w}_{\mathrm{i}}(\mathrm{t}) \mathrm{L}_{\mathrm{i}}(\mathrm{t}) wi(t)Li(t) 对于参数 W \mathrm{W} W 的梯度的L2范数,表示t次训练每个任务对于W传回的梯度大小。这个梯度越大,说明了任务主导性就越强,应该减小 w i \mathrm{w}_{\mathrm{i}} wi
  • G ‾ W ( t ) = E t a s k [ G W ( i ) ( t ) ] \overline{\mathrm{G}}_{\mathrm{W}}(\mathrm{t})=\mathrm{E}_{\mathrm{task}}\left[\mathrm{G}_{\mathrm{W}}^{(\mathrm{i})}(\mathrm{t})\right] GW(t)=Etask[GW(i)(t)] :各个任务传回的参数梯度范数的平均值,从而得到每个任务对参数梯度的相对大小。
  • L ~ i ( t ) = L i ( t ) / L i ( 0 ) \tilde{\mathrm{L}}_{\mathrm{i}}(\mathrm{t})=\mathrm{L}_{\mathrm{i}}(\mathrm{t}) / \mathrm{L}_{\mathrm{i}}(0) L~i(t)=Li(t)/Li(0) : 一定程度上衡量了 i \mathrm{i} i 任务的训练速度。
  • r i ( t ) = L ~ i ( t ) / E t a s k [ L ~ i ( t ) ] \mathrm{r}_{\mathrm{i}}(\mathrm{t})=\tilde{\mathrm{L}}_{\mathrm{i}}(\mathrm{t}) / \mathrm{E}_{\mathrm{task}}\left[\tilde{\mathrm{L}}_{\mathrm{i}}(\mathrm{t})\right] ri(t)=L~i(t)/Etask[L~i(t)] : 相对训练速度,即 r i ( t ) \mathrm{r}_{\mathrm{i}}(\mathrm{t}) ri(t) 越大,说明 L i ( t ) \mathrm{L}_{\mathrm{i}}(\mathrm{t}) Li(t) 越大,说明loss下降的幅度小,这个任务训练的慢。

在每次优化中, L t a s k L_{task} Ltask L g r a d L_{grad} Lgrad交替训练。

DWA(2019)

End-to-End Multi-Task Learning with Attention

定义loss下降速度,计算对应权重,GradNorm的简化版
r i ( t − 1 ) = L i ( t − 1 ) L i ( t − 2 ) r_i(t-1)=\frac{\mathcal{L}_i(t-1)}{\mathcal{L}_i(t-2)} ri(t1)=Li(t2)Li(t1)
w i ( t ) = exp ⁡ ( r i ( t − 1 ) / T ) ∑ n exp ⁡ ( r i ( t − 1 ) / T ) w_i(t)=\frac{\exp \left(r_i(t-1) / T\right)}{\sum_n \exp \left(r_i(t-1) / T\right)} wi(t)=nexp(ri(t1)/T)exp(ri(t1)/T)


2.3 Direction

PE-LTR

A Pareto-Efficient Algorithm for Multiple Objective Optimization in E-Commerce Recommendation

推荐系统里的多目标调参-pareto efficient

用户级别的Pareto优化

m i n ∥ ∑ i = 1 K ω i ∇ θ L i ( θ ) ∥ 2 2 min \quad \left\|\sum_{i=1}^K \omega_i \nabla_\theta L_i(\theta)\right\|_2^2 min i=1KωiθLi(θ) 22 s.t. ∑ i = 1 K ω i = 1 , ω 1 , ⋯   , ω K ≥ 0 \sum_{i=1}^K \omega_i=1, \omega_1, \cdots, \omega_K \geq 0 i=1Kωi=1,ω1,,ωK0

目标融合

关于推荐系统多目标融合排序的进一步思考
多目标排序在快手短视频推荐中的实践
一矢多穿:多目标排序在爱奇艺短视频推荐中的应用

1. 公式如何设计?

推荐系统多目标优化专题(2)—融合公式设计思路


1.线性加法
a ∗ p E v t r + b ∗ p L t r + … + g ∗ f ( p W a t c h  Time  ) \mathrm{a} * \mathrm{pEvtr}+\mathrm{b} * \mathrm{pLtr}+\ldots+\mathrm{g} * \mathrm{f}(\mathrm{pWatch} \text { Time }) apEvtr+bpLtr++gf(pWatch Time )
目标权重就代表了在融合公式中的重要度,哪个目标应该更重要 (或者想涨哪个指标) 调大,但这个系数对于所有用户都是一样的比例


2.指数乘法
 score  = p V T R w V T R × p V C R w V C R × p S H R w S H R × ⋯ × p C M R w C M R × f (  video_len ) \text { score } =p_{V T R}{ }^{w_{V T R}} \times p_{V C R}{ }^{w_{V C R}} \times p_{S H R}{ }^{w_{S H R}} \times \cdots \times p_{C M R}{ }^{w_{C M R}} \times f( \text { video\_len} )  score =pVTRwVTR×pVCRwVCR×pSHRwSHR××pCMRwCMR×f( video_len)

融合公式对于不同用户是有一定个性化

指数3是预估值越大,单目标在融合公式的影响力也越强;(比如弹幕/点赞这种稀疏目标,预估值高的权重大一些;对于那些喜欢发弹幕的用户,不妨让他们的弹幕目标影响力大一些)

指数0.3则是预估值越大,单目标在融合公式的影响力进行抑制(通俗来讲,即有没有很重要,多还是超级多不关心)


3.带权指数加法
 score  = ∑ i = 1 n  factor  ( α i +  score  i ) β i \text { score }=\sum_{i=1}^n \text { factor }\left(\alpha_i+\text { score }_i\right)^{\beta_i}  score =i=1n factor (αi+ score i)βi

  • factor(组合权重):调节单目标整体的影响力
  • beta(提升比例):基于预估分数调节单目标影响力,即融合公式有一定用户个性化
  • alpha(灵敏度):起到一定兜底作用,同时保证factor只调大单一目标权重,而不是作用于融合公式整体

缺点:加法形式特别容易被最大的目标主导,而稀疏目标一般都有比较大的factor


  1. 带权指数乘法

 score  = ∏ i = 1 n  factor  ( α i +  score  i ) β i \text { score }=\prod_{i=1}^n \text { factor }\left(\alpha_i+\text { score }_i\right)^{\beta_i}  score =i=1n factor (αi+ score i)βi


2. 如何在线优化?

多目标搜参,首先初始化参数;通过融合公式得到每个视频最终的排序分,并计算各子目标的AUC;根据指标的重要性对分类的AUC、回归的PNR等确定权重,定义总的优化目标:
max  Obj  = ∑ i w i ∗ A U C ( t i ) + ∑ j w j ∗ P N R ( r j ) \text{max} \quad \text { Obj }=\sum_i w_i * A U C(t_i)+\sum_j w_j * P N R(r_j) max Obj =iwiAUC(ti)+jwjPNR(rj)
通过持续迭代,使得总评估目标Obj最大,即得到各子目标的超参数α、β。


  1. PSO(粒子群)算法

  1. ES(进化)策略

AI大模型中的多任务学习:一石多鸟
程序员光剑
07-08 959
AI大模型中的多任务学习:一石多鸟 作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming 关键词:多任务学习, 大型预训练模型, 集成学习, 效率提升, 数据效率, 技术融合 1.背景介绍
推荐算法的多模型融合
给我一点温度
08-05 6424
目录 1)线性加权融合法 2)交叉融合法(blending) 3)瀑布融合法 4)特征融合法 5)预测融合法 6)分类器 Boosting 思想 多模型融合算法可以比单一模型算法有极为明显的效果提升。但是怎样进行有效的融合,充分发挥各个算法的长处呢,这里总结一些常见的融合方法: 1)线性加权融合法 线性加权是最简单易用的融合算法,工程实现非常方便,只需要汇总单一模型的结果,然后...
多任务学习MTL-基本介绍(一)
u012720552的专栏
09-07 1164
多任务模型 单任务模型 一个模型学习一个目标,不同模型享用独立的模型空间,不同模型之间没有连接,相互独立 多任务模型 一个模型学习多个目标,共享同一个模型空间 优势:相比于单任务模型,同时学习多个相关任务,多任务模型具有相当的优势。 例如:视频推荐中的例子把点击率、时长和完播率拆分出来,形成三个独立的训练目标,分别建立各自的Loss Function,作为对模型训练的监督和指导。 相关任务 (1)使用相同的特征做判断的任务 如果两个任务是处理输入的相同函数,但是在任务信号中加入独立的噪声,很明显这两个
多任务学习模型MTL: MMoE、PLE
sgyuanshi的博客
10-25 8127
常见的监督学习包括: 回归:预测值为连续值,如销售额; 二分类:预测值为离散值,且只有两种取值,如性别,要么是男,要么是女; 多分类:预测值为离散值,且多于两种取值,如动物分类,可能有猫、狗、狮子等等; 还有另外一种,也是本文的主角:多任务学习(Multi Task Learning)。 MTL介绍 首先,介绍什么是多任务学习,例如之前文章提到的微信视频场景,同时包含多个学习目标(task):是否转发、是否点赞、是否关注等。 微信大数据挑战赛 以往的做法可能会对不同的task分别建立对应的模型,但这样会
MTL模型checkpoint保存
weixin_39056447的博客
01-18 217
直接贴代码 tensorboard = TensorBoard(log_dir='./log') checkpoint = ModelCheckpoint(filepath='./log/best_weights.h5', monitor="out_1_loss", save_best_only=True, verbose=0) callback_lists = [F1Score, tens...
数据挖掘实践(金融风控)——task5:模型融合
weixin_45325331的博客
09-25 523
文章目录平均1.简单平均2.加权平均投票1.简单投票2.加权投票stackingblending总结 平均 1.简单平均 结果直接融合 求多个预测结果的平均值。pre1-pren分别是n组模型预测出来的结果,将其进行加权融 pre = (pre1 + pre2 + pre3 +...+pren )/n 2.加权平均 根据之前预测模型的准确率,进行加权融合,将准确性高的模型赋予更高的权重。 pre = 0.3pre1 + 0.3pre2 + 0.4pre3 投票 1.简单投票 from xgboost
模型融合
Rosefinch的博客
04-04 486
一般来说,通过融合多个不同的模型,可能提升机器学习的性能,这一方法在各种机器学习比赛中广泛应用,比如在kaggle上的otto产品分类挑战赛①中取得冠军和亚军成绩的模型都是融合了1000+模型的“庞然大物”。 常见的集成学习&模型融合方法包括:简单的Voting/Averaging(分别对于分类和回归问题)、Stacking、Boosting和Bagging。 Voting/Averagi...
多任务学习(Multi-Task Learning,MTL):SB,MMOE,SNR
Leon_winter的博客
04-18 6203
文章目录 多任务学习通常通过隐藏层的 Hard 或 Soft 参数共享来完成。 共享 Hard 参数是神经网络 MTL 最常用的方法,可以追溯1993年Caruana所发表的论文。在实际应用中,通常通过在所有任务之间共享隐藏层,同时保留几个特定任务的输出层来实现。共享 Hard 参数大大降低了过拟合的风险。1997年Jonathan Baxter在他的论文中证明过拟合共享参数的风险为 O(N)——...
关于多任务学习(MTL
gaoxueyi551的专栏
05-06 533
举个例子,一个能识别猫和狗的模型,同时也能识别猫或者狗的颜色、是否在睡觉、是否不开心,这就是多任务。模型单独在A或B任务上训练都会有过拟合某个任务的风险,因为模型会受特定任务下的数据噪音干扰,但同时在两个任务上训练,由于模型要兼顾A和B,所以摄入的噪音会被平均,将会得到一个泛化性更好的表示。但是,多个任务同时训练可以互相之间提供辅助信息,有助于模型提取每一任务相关的特征。某些特征G通过A任务难以学习,但是B任务缺信手拈来,通过联合学习A和B任务,G可以通过B任务进行学习和提前,进而辅助A任务的训练。
初识模型融合方法(图解)
woyaowogexing的专栏
07-10 1989
因为在做比赛用到这方面的知识,应用是最大的动力,下面是自己的一点总结, 将从两方面展开:(1)最懒的融合---直接对几个模型的结果(即提交文件)进行融合。有下面几种方法可以尝试:·       投票法。例如得到了a、b、c、d、e五个模型对一个样本的分类结果,那么可以采取投票法,如果超过半数的模型的结果是正例,则我们得出结论该样本是正例。提高分类准确率方面,少数服从多数有很重要的作用。为什么投票法...
obj格式三维模型+mtl贴图,实测可用
05-03
obj格式三维模型+mtl贴图,实测可用,我的博客下面有一篇名为 《用python加载obj格式三维模型(加mtl贴图) 》的文章可以看到效果图
网页显示3D模型(obj和mtl格式)
02-26
请用火狐浏览器测试打开页面。根据Three.js官方例子改写的几个模型加载程序,分享出来供大家学习。
关于多目标任务有趣的融合方式
zenRRan的博客
03-02 363
每天给你送来NLP技术干货!干货作者:炼丹小生来自:炼丹笔记如何通过融合解决多标签分类(MLC)问题.这里给了两个的方案:SST与大多数机器学习模型一样,这里的目标是构造一个将输入映...
python加权平均融合矩阵运算(Image Stitching 1)
YMilton的专栏
12-20 5859
考虑到python通过for循环实现加权平均融合效率比较低,本文采用矩阵运算的形式实现加权平均融合。其中加权平均融合公式如下: 是融合图像,是需要拼接的两幅图像,是渐入渐出法中的权重权重的计算公式如下: 也就是上面的两个公式,挺简单的,相对于C++而言,用python实现加权平均融合的矩阵运算更加容易理解。直接上结果图,以下是加权平均融合之前与融合之后的对比。 加...
【推荐系统多任务学习 MTL】PLE论文精读笔记(含代码实现)
weixin_41888257的博客
03-15 7923
论文地址: Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations 前言 PLE 为 Recsys 2020最佳长论文,出自腾讯的 PCG(Platform and Content Group) 推荐视频团队。PLE 是 MMoE (详见【推荐系统多任务学习MTL】MMOE论文精读笔记(含代码实现) )的改进版,结构简单且效果好,PLE 主
MTL多目标学习介绍综述等
serenysdfg的博客
07-03 4431
工业界解决多目标问题的方案基本有三种策略:多模型分数融合、排序学习(Learning To Rank,LTR)、多任务学习(Multi-Task Learning,MTL) 1、 An Overview of Multi-Task Learning in Deep Neural Networks-June 2017 .两种深度学习 MTL 方法 2017 Hard sharing:在多任务之间共享隐层,降低over fitting的风险 Soft sharing各任务之间有自己的模型和参数,主要靠r
推荐系统 - 多目标模型融合部分
yangzixuan_0608的博客
12-11 4590
1、线性加权融合法 既是给不同的模型加权,让不同模型融合在一起 有两种加权方式: 1)、权值参数固定,给不同的场景设定不同的权重参数,给不同的特征设定不同的参数 适用于特征数量少,预测结果可观察的情况; 修改权重参数的方法是观察结果直接修改; 2)、动态参数法,既是使用wx+b,利用损失函数,训练w 实施步骤: -- 1、原始数据 -...
多目标融合参数搜索
最新发布
得克特
06-10 1041
权重分类目人群。
模型融合权重确定
weixin_44572860的博客
02-20 1215
权重向量的公式可以通过最小化误差的方法推导得到。基本思想是希望通过模型融合,得到的综合模型的预测结果与真实值之间的误差最小化。要确定权重,可以使用协方差矩阵的逆矩阵作为权重。随后可以根据序来决定每个模型权重大小。
写文章

热门文章

  • 算法面/笔试刷题 2065
  • uplift model的理论与实践 1671
  • 召回模型:DSSM双塔模型 1595
  • 虚拟环境创建与管理 1425
  • MTL框架:模型、权重与融合公式 1416

分类专栏

  • 因果推断 3篇
  • 推荐系统 5篇
  • 场外衍生品
  • data science 1篇
  • Notes 3篇

大家在看

  • 学习CentOs我们必备入门基础知识 1051
  • 2374. 边积分最高的节点 598
  • 【隐私计算篇】Diffie-Hellman密钥交换以及离散对数问题、群论等概念 888
  • CSS从入门到精通(已完结)
  • 【入门】角谷猜想

最新文章

  • Causal Forest Theory
  • Casual inference 综述框架
  • uplift model的理论与实践
2023年1篇
2022年11篇
2019年6篇

目录

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

玻璃钢生产厂家句容玻璃钢马雕塑设计企鹅玻璃钢雕塑玻璃钢几何雕塑供应玻璃钢雕塑到底哪家强黄山商场美陈布展玻璃钢果蔬雕塑工程公司湖北玻璃钢浮雕园林不锈钢雕塑重庆做玻璃钢雕塑锻铜玻璃钢人物雕塑价格资阳玻璃钢造型雕塑湖南玻璃钢海豚雕塑玻璃钢花盆制作经过抚州玻璃钢雕塑人物芜湖人物玻璃钢雕塑设计泰州玻璃钢鹿雕塑厂家深圳玻璃钢雕塑价格中山玻璃钢动物雕塑商家河源树脂玻璃钢雕塑摆件苏州玻璃钢雕塑制作精良大庆卡通玻璃钢雕塑公司温州玻璃钢雕塑摆件研发浙江玻璃钢雕塑工艺品浙江校园玻璃钢雕塑定制长沙玻璃钢泡沫雕塑定制玻璃钢雕塑便宜厦门广场玻璃钢雕塑价格郑州佛像校园玻璃钢景观雕塑报价甘南抽象人物玻璃钢雕塑安装马路中玻璃钢花盆图片供应好的玻璃钢人物雕塑香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化